Path Integrals and Voronin’s Theorem on the Universality of the Riemann Zeta Function

نویسنده

  • Khalil M. Bitar
چکیده

This talk is based on work with N. Khuri and H. Ren.[1,2] The main new tools we use are theorems by Voronin on the universality properties of the Riemann Zeta function, ζ(s), in the critical strip, 1 2 < Re s < 1. Given any real continuous function, φ(x), 0 ≤ x ≤ L, we can choose a mapping, s(x), which maps the line, 0 ≤ x ≤ L, onto a line s(x) that lies in the strip 1 2 < Re s < 1, then given any ∆ > 0, we have an infinite set of integers, L, such that for all nǫL,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspects of Analytic Number Theory: The Universality of the Riemann Zeta-Function

Abstract. These notes deal with Voronin’s universality theorem which states, roughly speaking, that any non-vanishing analytic function can be uniformly approximated by certain shifts of the Riemann zeta-function. We start with a brief introduction to the classical theory of the zeta-function. Then we give a self-contained proof of the universality theorem. We conclude with several interesting ...

متن کامل

An Effective Universality Theorem for the Riemann Zeta Function

Let 0 < r < 1/4, and f be a non-vanishing continuous function in |z| ≤ r, that is analytic in the interior. Voronin’s universality theorem asserts that translates of the Riemann zeta function ζ(3/4 + z + it) can approximate f uniformly in |z| < r to any given precision ε, and moreover that the set of such t ∈ [0, T ] has measure at least c(ε)T for some c(ε) > 0, once T is large enough. This was...

متن کامل

Unprovability, phase transitions and the Riemann zeta-function

Unprovability Theory started with Kurt Gödel’s incompleteness theorems in 1931 but only gained mathematical significance since the late 1970s when Jeff Paris and Harvey Friedman discovered the first few families of interesting combinatorial statements that cannot be proved using the axioms of Peano Arithmetic or even some stronger axiomatic systems. In this survey article we briefly introduce t...

متن کامل

Uniform Approximation on Riemann Surfaces

This thesis consists of three contributions to the theory of complex approximation on Riemann surfaces. It is known that if E is a closed subset of an open Riemann surface R and f is a holomorphic function on a neighbourhood of E, then it is “usually” not possible to approximate f uniformly by functions holomorphic on all of R. In Chapter 2, we show, however, that for every open Riemann surface...

متن کامل

On the Theory of Zeta-functions and L-functions

In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its generalizations in a cohesive manner. In particular, we have studied and mentioned some recent results regarding Hurwitz and Lerch functions, as well as Dirichlet’s L-function. We have also investigated some fundamental concepts related to these functions and their universality properties. In addition, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992